Experiment No: 15

Aim : To study the characteristics of a common emitter transistor and to find out the values of current and voltage gains.

Apparatus : An n-p-n transistor, dual power supply (battery) with 3V & 10V, two rheostats, two voltmeters (0 – 3V and 0 – 10V), milli-ammeter (0-100mA), micro-ammeter (0 – 100 μ A) and connecting wires.

Theory : In a common emitter configuration, the emitter – base is the input and the collector – base is the output. The input is forward biased and the output is reverse biased. The emitter current dives itself into base current and collector current. The current gain of a transistor in common emitter configuration is given by

$$\beta = \frac{\Delta I_C}{\Delta I_B}$$

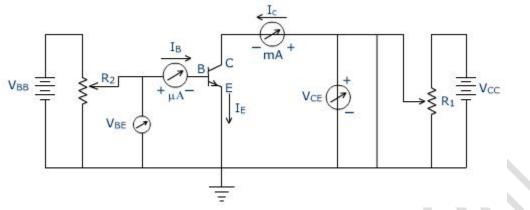
Procedure :

- 1. Make the circuit diagram as shown in the figure. Make all connections clean and tight.
- 2. Note the least count and zero error of all the meters used.
- 3. Move the rheostat R_1 and keep V_{CE} (V₂) a constant, say 4V.
- 4. Move the rheostat R_2 and increase the forward bias (V_{BE}) in steps of 0.1V till the voltmeter reads 0.7V. Note the corresponding base current (I_B) in each case.
- 5. Plot a graph between V_{BE} and $I_B,$ taking V_{BE} long the x-axis and I_B along the y axis.
- 6. Move both rheostats and bring both voltmeters back to zero. Move the rheostat R₂ and keep the input current (IB) a constant, say 50 uA.
- 7. Move the rheostat R_1 and increase the reverse bias (V_{CE}) in steps of 0.1V till to voltmeter reads 1V and note the collector current (I_C) in each case.
- 8. Plot a graph between V_{CE} and I_C , taking V_{CE} long the x-axis and I_C along the y axis.

Result :

- 1. The input and output characteristics of an n p n transistor has been plotted.
- 2. For the given configuration, the current gain (β) = _____

Precautions :


- 1. All connections should be clean and tight.
- 2. Forward and reverse bias voltages beyond the specified value should not be supplied.

Sources of error :

- 1. The transistor may be faulty.
- 2. The connections are not clean or tight.

Eby P Kurien ebypkurien@gmail.com

Circuit Diagram

V

V

Observations

a) Output characteristics

- *i. L.C. of voltmeter*
- ii. L.C. of milli-ammeter тA V
- iii. Zero error of voltmeter
- iv. Zero error of milli-ammeter _ тA
- b) Input characteristics
 - *i. L.C. of voltmeter*
 - ii. L.C. of micro-ammeter μA V
 - iii. Zero error of voltmeter
 - iv. Zero error of micro-ammeter μA

Observation Table

For input characteristics $V_{CE} = $		
Sr. No.	Base-Emitter	Base Current
	voltage (V_{BE})	(µA)
1	0	
2	0.1	
3	0.2	
4	0.3	
5	0.4	
6	0.5	
7	0.6	-
8	0.7	

For output characteristics $I_B =$ μA

Sr. No.	Collector- Emitter voltage (V _{CE})	Collector Current (mA)
1	0	
2	0.1	
3	0.2	
4	0.3	
5	0.4	
6	0.5	
7	0.6	

Eby P Kurien ebypkurien@gmail.com