Experiment No: 11

Aim: To determine the angle of minimum deviation for a given prism by plotting a graph between angle of incidence and angle of deviation.

Apparatus: Drawing board, prism, drawing pins, a white sheet of paper, graph paper and a protractor.

Theory: If A is the angle of the prism and δ_m is the angle of minimum deviation, then the refractive index of the prism is given by,

$$n = \frac{\sin\frac{(A+\delta m)}{2}}{\sin\frac{A}{2}}$$

Procedure:

- 1. Fix the white sheet on the drawing board by fixing all the four corners using pins.
- 2. Draw a straight line XY parallel to the length of the paper in the middle of the paper.
- 3. Keep the prism in such a way that one of its side AB is parallel to the line and draw its outline.
- 4. Remove the prism and draw a perpendicular MN. Draw another straight line PQ measuring 35° from MN. This is the angle of incidence.
- 5. Fix two office pins on the line PQ, one close to the prism and the other at least 10mm from the first pin.
- 6. Look for the pins from the side AC of the prism and closing one eye, fix two more pins in such a way that all the four pins appears to be in a straight line.
- 7. Remove the pins and join the points with a straight line RS.
- 8. Remove all the pins and the prism. Extent the line PQ and measure the angle formed between the lines PQ and RS. This angle is the angle of deviation δ .
- 9. Repeat the above steps for different angles 40°, 45°, 50° and 55°.
- 10. Plot a graph between angle of incidence and angle of deviation. From the graph, find the angle of minimum deviation δ_m .

Result : (i) The i – δ graph indicates that as the angle of incidence increases, the angle of deviation decreases, reaches a minimum value and then increases.

(ii) Angle of minimum deviation δ_m = _____

Precautions:

- 1. The pins should be vertical
- 2. The distance between the pins should be at least 10mm.
- 3. The same angle of the prism should be used for all the observations.

Sources of Error:

- 1. There could be parallax error
- 2. Measurement of the angle may be wrong.

Fig:

Observation Table:

Serial No :	Angle of incidence (i)	Angle of deviation (δ)
1	35°	
2	400	
3	45°	
4	50°	
5	55°	

Angle of the prism : _____

From the graph, angle of minimum deviation $\delta_{\rm m}$ = _____