EXPERIMENT NO: 7

Aim : To verify the law of combination (parallel) of resistors using a metre bridge.

Apparatus : A metre bridge, battery or a battery eliminator, galvanometer, low resistance box, high resistance box, jockey, key, two known resistance coils and connecting wires.

Theory : If two resistors R_1 and R_2 are connected in parallel, then the effective resistance of the combination R_p is given by the relation, $\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2}$

The known resistance (say R_1) is connected across the right gap of the meter bridge. When the bridge is balanced,

 $R_1 = \frac{100-l}{l} R$; where *R* is the resistance across the left gap (resistance box) and *l* is the balancing length measured from the end A)

Procedure :

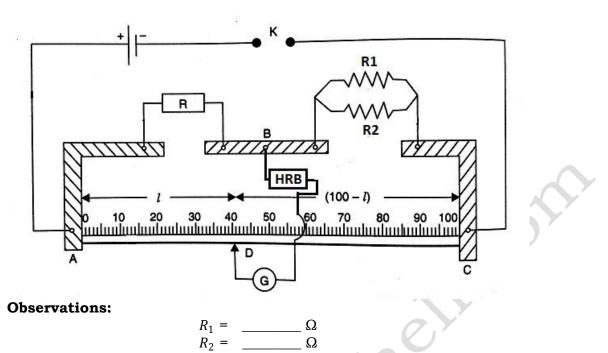
- 1. Arrange the apparatus accordingly, with reference with the circuit diagram.
- 2. Connect the known resistance (R_1) in the right gap of the meter bridge.
- 3. Connect the low resistance box in the left gap of the metre bridge.
- 4. Make all other connections as shown in the circuit diagram.
- 5. Take out a small resistance (say 5 Ω) from the low resistance box and a high resistance (say 2000 Ω) from the high resistance box.
- 6. Touch the jockey on both ends of the metre bridge wire (A and C). If the galvanometer shows opposite deflections, the connections are correct.
- 7. Move the jockey along the metre bridge wire from the left to the right, till the galvanometer shows zero or null deflection. This point is called the null point.
- 8. Adjust the value from the low resistance box (R), such that the null point is between 40cm and 60 cm of the metre bridge wire. Measure the length AD=1.
- 9. Repeat the same for different values of R and take three sets of observation.
- 10. Remove R_1 and connect R_2 across the right gap and take three sets of observations.
- 11. Connect R_1 and R_2 in parallel and connect the combination across the right gap. Take three sets of observations.

Result :

Experimental value of $R_p = _ \ \Omega$ Theoretical value of $R_p = _ \ \Omega$ Difference = $_ \ \Omega$

Within the limits of experimental error, the theoretical and experimental values of R_s are same. Hence, law of resistors in parallel is verified.

Precautions :


- 1. The connections should be clean and tight.
- 2. All the plugs in the resistance box should be tight.
- 3. Null points should be brought between 40 cm and 60 cm.

Sources of error :

- 1. The instrument screws may be loose.
- 2. The known resistances may have a different value.
- 3. The resistance box plugs may not be clean.

Eby P Kurien ebypkurien@gmail.com

Circuit Diagram :

$$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} =$$
 (Theoretical value)

Observation Table :

Resistance Coil	Sr. No.	Resistance taken from Resistance Box, <i>R</i> (Ω)	l (cm)	100 – <i>l</i> (cm)	Measured Resistance (Ω)	Mean Resistance (Ω)
<i>R</i> ₁	1 2 3	5				
<i>R</i> ₂	1 2 3	•				
R _p	$\begin{array}{c}1\\2\\3\end{array}$					

Calculation:

$$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2}$$

$$R_p = _ \Omega \text{ (Experimental value)}$$
Difference = _ Ω